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Abstract—This paper examines the use of Physics-Informed
Neural Networks (PINNs) for solving electromagnetic interface
problems, with a particular focus on scenarios involving two
distinct materials with differing electromagnetic properties and a
shared interface. A representative test case involving concentric
disks with differing permeabilities is employed to solve Poisson’s
equation for the z-component of the magnetic vector potential.
The results generated by the PINN are compared to those
obtained using the Finite Element Method (FEM) with errors
typically below 3.3%. The findings indicate that PINNs are well-
suited for tackling the complexities associated with electromag-
netic modeling involving interfaces.

I. INTRODUCTION

In recent years, deep learning and neural networks (NNs)
have become dominant methodologies across a wide range
of fields. A significant focus of contemporary research is the
application of NNs in scientific computing, particularly for
solving differential equations that underpin many scientific and
engineering challenges [1]. Among these methods, Physics-
Informed Neural Networks (PINNs) have gained substantial
attention for their effectiveness in this domain [2].

PINNs have shown substantial applicability in addressing
electromagnetic problems, particularly in solving Maxwell’s
equations and other complex phenomena involving electric and
magnetic fields. Their flexibility, combined with the ability to
incorporate physical laws directly into the training process,
makes them highly suitable for tackling the challenges inherent
in electromagnetic simulations. In [3], the study investigates
the application of PINNs for solving magnetostatic boundary
value problems. The findings highlight the critical role of
domain similarity in influencing the performance of PINNs,
highlighting the need for further research to improve their
efficiency in electromagnetic simulations. Another critical
aspect of electromagnetic modeling is ensuring continuity at
the interface between two different materials. When materials
with distinct electromagnetic properties come into contact,
accurately predicting field continuity—such as the values of
magnetic fields—at these interfaces is essential. Ensuring
compatibility at the interface is fundamental to maintaining
the physical accuracy of simulations and is crucial for un-
derstanding the behavior and performance of electromagnetic
devices.

This paper proposes a PINN for solving an electromagnetic
problem involving two distinct materials separated by an
interface, which is a simple yet representative test case.

II. PROBLEM DESCRIPTION

For our problem we consider the Poisson’s equation, as
described in equation (1),

−µ−1∆az(x) = jz(x), x ∈ Ω, (1)
az(x) = 0, x ∈ ∂Ω,

where az represents the z-component of magnetic vector
potential, and jz denotes the excitation current density. Ho-
mogeneous Dirichlet boundary conditions are applied at the
domain boundary (∂Ω), where Ω represents the computational
domain. The excitation current density (jz) is 106 A

m2 . The
geometry of the problem consists of two concentric disks with
an interface between them. The radius of the outer disk is
0.5 m, while the inner disk has a radius of 0.125 m. Each
disk is composed of a different material, resulting in distinct
permeability µ values for each material. Outer disk has a
relative permeability of µr1 = 1, while the inner disk has
a relative permeability of µr2 = 10. The permeability of free
space (µ0) is taken as 4π × 10−7 H

m .

III. PROBLEM IMPLEMENTATION

Each disk is assigned a separate PINN for training. Each
PINN incorporates several loss terms, which are outlined as
follows:
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For each disk, a physics loss function is defined based on
Poisson’s equation. The outer disk includes an additional
boundary condition loss term. Both disks share an interface
loss term, which couples the two NNs together. The loss terms
in each region are associated with weight factors, denoted as
λ, which are multiplied by their respective loss terms and are
predetermined prior to training. The transmission conditions
at the interface (Γ) are described below.

n× (h2 − h1)

∣∣∣∣
Γ

= 0 (4)

n · (b2 − b1)
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= 0 (5)

Where n represents the normal component, and h and b denote
the magnetic field intensity and magnetic flux density, respec-
tively. The conditions integrated into the interface loss terms
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are formulated based on the primary conditions described in
equations (4) and (5), and are presented as follows:
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The neural network architectures employed are fully connected
feedforward networks. The input layer is designed to accept
two features—coordinates x and y. In the final stage, which
is the testing stage of the PINN, the predictions are compared
with the results obtained from the Finite Element Method
(FEM) analysis implemented in the ONELAB software [4].

IV. RESULTS

Figure 1 compares the z-component of the magnetic vector
potential (az) obtained using the FEM and PINN. Fig. 1-(a)
shows the FEM results, which serve as the reference, with az
values ranging from approximately 0 to 0.12 Wb

m . Fig. 1-(b)
presents the PINN predictions, which closely match the FEM
solution, indicating the PINN’s capability to learn the underly-
ing physics governing az within the domain. Fig. 1-(c) depicts
the error distribution between the FEM and PINN results, with
absolute values ranging from about 0.0028 to 0.0040 Wb

m .
Notably, slightly higher discrepancies are observed near the
central region and along the boundaries, with the maximum
error amounting to about 3.33%.

Figure 2 presents PINN model predictions for the interface
conditions against the reference solution. The inner disk inter-
face and outer disk interface predictions align closely with
the reference curve, demonstrating the PINN’s accuracy in
capturing the magnetic vector potential across interfaces.

V. CONCLUSION

This study has demonstrated the potential of PINNs to
model electromagnetic interface problems with reasonable
accuracy compared to traditional FEM. By incorporating phys-
ical laws directly into the network’s training process, the
PINN was able to capture the behavior of magnetic vector
potential across different materials, showing errors generally
below 3.3% compared to FEM results. Further validation and
extension of the method to more complex geometries and
materials are necessary for broader practical adoption.
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Fig. 1. Comparison of the z-component of the magnetic vector potential
results: (a) FEM results, (b) PINN predictions, and (c) absolute error between
FEM and PINN solutions.

Fig. 2. Comparison of interface predictions with reference values for the
inner and outer disks.
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